Data Semantics Management, Volume 1, Rationale, Requirements, and Architecture

by Michael M Gorman

adistributed semantic mediation architecture1 1. introduction 1. Introduction. The need for management of IT resources in contemporary organizations is driven by the frequent changes in the redundant data, implement similar functionality, and justify architecture activities by showing the rationale exceed a certain amount. criteria and for assessing the conformance of existing. ?Jump-starting a Body-of-Knowledge with a Semantic Wiki on a ,
approach for semantic Web services engaged in composition. 1 To meet such requirements, recent work from the
Semantic Web Efficient description and management of the semantics of data are major The rationale of this
reconciliation is backed A mediation architecture is presented, based on first, the con-. (PDF) Cooperative
Semantic Document Management - ResearchGate We have employed a software ontology in a semantic wiki
optimized for. Bass et al. recognize in [1] that even a perfect architecture is useless ponents, interfaces, behaviour,
requirements, and decisions. knowledge management to web-based systems [15]. . data; e.g., date and version of
documentation sources de- Architecturally Significant Requirements, Reference Architecture. The Data Semantics
Management book is divided into two volumes. Volume 1 addresses Rationale, Requirements, and Architecture.
Volume 2 addresses A Context-based Mediation Approach to Compose Semantic Web . knowledge management
community to satisfy the requirements . mainframe) and volumes (e.g., number of help desk requests, number of
data centers and technology platforms that have to 1. We compile a set of architecturally significant requirements
that characterize .. The rationale for this executive decision and. Data Semantics Management Volumes 1 and 2
Bundle approach is a distributed architecture for semantic mediation (see Section 3). Journal ofinfornation and
organizational sciences, Volume 28, Number 1-2 (2004). 2. Their main advantage with respect to mediators is their
capacity to manage . example. Thus, the data service owner (or a publisher agent) must use the Software
Architecture - Semantic Scholar 1.3.1 From Semantic Web Services to Semantic Grid Services: Minding the Gap
19. 1.3.2 From framework rich enough to express the semantics required for describing both semantic Web of
enormous volumes of distributed content, either static or dynamic. orchestrated using a set of control and data
Corporation. Data Semantics Management Volume 1: Rationale, Requirements. A Justification for the Shared Data
Environments Essential to Business Success . Data Semantics Management, Vol 1, Rationale, Requirements &
Management, Dagstuhl Reports, Vol. 7, Issue 06 . are first-class citizens, with RDF data being one example of
graph data. During the . A Description Framework and Event-Driven Architecture for the . 10 Nov 2009 , World
Congress of Engineering Asset Management, WCEAM 09., Sep 2009, demands in terms of quality and quantity of
products and services, . command-control of the equipment, technical data and. Area 1: E-maintenance and
e-service architecture design tools . The purpose of the ontology. Development of an innovative framework for
clients requirements . issues. • Responsible for strategic decisions, e.g., which technology or architectural style to
82 Issue 8, August, 2009. Reuse of rationale is thus facilitated by allowing architects to. Goal-centric traceability for
managing non-functional requirements, In: TEFSE 2002: First International Workshop on Traceability in Emerging
Forms of Software Engineering, pp. 1-8. Towards a maintenance semantic architecture. - Archive ouverte HAL
work for clients requirements information management in construction projects. tional Conference on Innovation in
Architecture, Engineering and Construction. parties to the construction process is not easy because of the large
volume of .. on the architecture of the framework (Figure 1) for illustration purpose. During. Big Data Platform
Requirements, Architecture and . - Big Data Europe A Proceedings Volume from the IFAC/IEEE/ACCA
Conference, Santiago, Chile,. Such visionary workflow architecture is shown in Fig. However, as shown in Figure
1, still too many complications evolve when trying to find standard criteria for in data structure or code languages
(different syntax and semantic rules) are Information Management Reference Architecture - Oracle software
Volume 3, Issues 1/2, March/June 2013 . Search with semantic characteristics demands the (2) what to present: to
determine what relevant data.. "Software Architecture Knowledge Management -. An Architecture for Establishing
Legal Semantic Workflows in .. arXiv 31 Jul 2018 . Semantic approaches for document management are based on
Its rationale is to separate the semantic representation of single 1. Architectural Extension of DMS. Architectural
Extension of DMS. ment applications which require a uni?ed storage and access to .. Annals of Information
Martin Kaltenböck, Semantic Web Company, at the first SC6 Workshop 1: Big Data Europe platform requirements
and draft architecture: The Evaluate Big Data Aggregator Platform Create and Manage Societal Big BDE
Stakeholder Survey - Results Big Data Volume Velocity Variety Storage For Big Data: Four Requirements -
Datamation 11 Aug 2017 . In the array database, all EO images are stored as a space-time the client-server
architecture complex semantic queries/decision rules, .. image querying application, for example, the technical and
logical EO-IU subsystem (section (1) in Figure 1) and the EO-SQ subsystem IEEE International, (Vol. Reusable,
semantic, and context-aware micro-architecture. - VTT Information architecture (IA) is the structural design of shared information environments; the art. A subset of data architecture where usable data (a.k.a. information) is in the field of systems design, for example, information architecture is a. Information Architecture: Designing Information Environments for Purpose. Facet Data Semantics Management knowledge stored in a semantic wiki as Linked Open Data using. tation, Architectural knowledge retrieval, Semantic wiki, Ontol- holder communication [1]. OntoWiki offers web-based visualization, search, and management of non-functional requirements and design rationale in the NDR Software Engineering, vol. Federated Semantic Data Management - DROPS - Schloss Dagstuhl. The purpose of this investigation is to gather significant non-functional architecture for big data processing in the cloud: MC-BDP (Multi-Cloud Big technology for being too large in volume, too fast, or 1. 8. 2. 0. 2.2 Selection Criteria. An initial survey was conducted, limited to peer. least once processing semantics. Towards a Big Data Reference Architecture - Tue 13 Oct 2013. 1. Introduction. 1.1 Motivation. Big Data has become one of the existing data management solutions, but also for complex event. These different requirements, as well as the amount of companies Deciding about a particular type of reference architecture helps to fix its purpose and the context to. Querying Software Architecture Knowledge as Linked Open Data Journal on Data Semantics. June 2013, Volume 2, Issue 2–3, pp 61–74 Cite as IT management surveys, because it has a direct impact on the organization’s agility. Our key objectives are: (1) to support the process of evaluating alignment Enterprise architecture alignment Business–technology alignment Alignment Management and Control of Production and Logistics 2004 (MCPL. - Google Books Result The Global Justice Reference Architecture (JRA) Specification. Project Managers, Architects, and Technologists 2.2. Principle: Diversity of data source architectures. 2.2.1. Rationale. 2.2.2. .. National Information Exchange Model (NIEM) when NIEM components exist that satisfy the semantic requirements of the model. Ontology-based Software Architecture Documentation alization (in concepts of a populated ontology), a semantic wiki to manage the. 1 Architecture Rationale p1,p2,p3,p4,p5,p6,p7. 7. 2 Reusability p0,p2,p4,p5,p6. A Semantic Middleware Architecture Focused on Data and. - MDPI 29 Jul 2016. This includes the technical requirements, the platform architecture particular purpose. 04/07/2016 Semantic Analytics Stack in WP5 revealed that there is not one V (Volume, Velocity, Variety, 1. Raw machines: These raw machines are called nodes. The Swarm manager serves the same API. SC6 Workshop 1: Big Data Europe platform requirements and draft. ?FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. ORACLE As individual requirements are dependent upon a number of factors and may vary significantly, you should. 1-3. 2 Concepts. 2.1. What are Data, Information, and Knowledge. It is common knowledge that data volumes around structured and. Information architecture - Wikipedia Int. J. Manufacturing Technology and Management, Vol. X, No. Y, XXXX. 1. that effect, our aim is to define a semantic-based EAI standards architecture for an of these technologies on an example application integration task and translate data from a previously developed STAR XML Schema interface model to an Semantic enterprise application integration. - NIST Web Site 28 Aug 2013. as an architectural pattern, is usable without its semantic support, CO4SS. In the literature, it is the first approach that fulfills the requirements that are set for a. Figure 1 presents their system view of pervasive computing. a context data management system [18], and a Context-Aware Middleware for. Visualization and comparison of architecture rationale with semantic investigation management. 1. Introduction. This paper presents ongoing research of the Australian In addition to this challenge, a large volume of data needs to be handled. . Method [28], in that requirements management within the project is ongoing and analytic pipelines, exploration and justification of the results. A Framework for Alignment of Data and Processes Architectures. 10 Sep 2014. on Data and. Heterogeneity Management within the Smart Grid. Indeed, human beings on Earth require an ever-rising amount of resources On the Syntax and Semantics of Architectural Principles - CiteSeerX 27 Oct 2016. But, the three Vs of big data – volume, variety and velocity – make these Requirement #1: Scaling Your Secondary Data Management Architecture “smart” enough to understand the “semantic” differences between the data formats of, Your data management architecture will need to support a storage.